skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Srivastava, Nandita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The abundance of helium (AHe) in the solar wind exhibits variations typically in the range from 2% to 5% with respect to solar cycle activity and solar wind velocity. However, there are instances where the observedAHeis exceptionally low (<1%). These low-AHeoccurrences are detected both near the Sun and at 1 au. The low-AHeevents are generally observed near the heliospheric current sheet. We analyzed 28 low-AHeevents observed by the Wind spacecraft and 4 by Parker Solar Probe to understand their origin. In this work, we make use of the ADAPT-WSA model to derive the sources of our events at the base of the solar corona. The modeling suggests that the low-AHeevents originated from the boundaries of coronal holes, primarily from large quiescent helmet streamers. We argue that the cusp above the core of the streamer can produce such very low helium abundance events. The streamer core serves as an ideal location for gravitational settling to occur as demonstrated by previous models, leading to the release of this plasma through reconnection near the cusp, resulting in low-AHeevents. Furthermore, observations from Ulysses provide direct evidence that these events originated from coronal streamers. 
    more » « less
  2. Abstract Interplanetary (IP) shocks are perturbations observed in the solar wind. IP shocks correlate well with solar activity, being more numerous during times of high sunspot numbers. Earth‐bound IP shocks cause many space weather effects that are promptly observed in geospace and on the ground. Such effects can pose considerable threats to human assets in space and on the ground, including satellites in the upper atmosphere and power infrastructure. Thus, it is of great interest to the space weather community to (a) keep an accurate catalog of shocks observed near Earth, and (b) be able to forecast shock occurrence as a function of the solar cycle (SC). In this work, we use a supervised machine learning regression model to predict the number of shocks expected in SC25 using three previously published sunspot predictions for the same cycle. We predict shock counts to be around 275 ± 10, which is ∼47% higher than the shock occurrence in SC24 (187 ± 8), but still smaller than the shock occurrence in SC23 (343 ± 12). With the perspective of having more IP shocks on the horizon for SC25, we briefly discuss many opportunities in space weather research for the remainder years of SC25. The next decade or so will bring unprecedented opportunities for research and forecasting effects in the solar wind, magnetosphere, ionosphere, and on the ground. As a result, we predict SC25 will offer excellent opportunities for shock occurrences and data availability for conducting space weather research and forecasting. 
    more » « less
  3. Abstract Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cannot be traced back to an observed CME, or, if the CME is identified, its origin may be elusive or ambiguous in coronal images. Such CMEs have been termed “stealth CMEs”. In this review, we focus on these “problem” geomagnetic storms in the sense that the solar/CME precursors are enigmatic and stealthy. We start by reviewing evidence for stealth CMEs discussed in past studies. We then identify several moderate to strong geomagnetic storms (minimum Dst$$< -50$$ < 50  nT) in solar cycle 24 for which the related solar sources and/or CMEs are unclear and apparently stealthy. We discuss the solar and in situ circumstances of these events and identify several scenarios that may account for their elusive solar signatures. These range from observational limitations (e.g., a coronagraph near Earth may not detect an incoming CME if it is diffuse and not wide enough) to the possibility that there is a class of mass ejections from the Sun that have only weak or hard-to-observe coronal signatures. In particular, some of these sources are only clearly revealed by considering the evolution of coronal structures over longer time intervals than is usually considered. We also review a variety of numerical modelling approaches that attempt to advance our understanding of the origins and consequences of stealthy solar eruptions with geoeffective potential. Specifically, we discuss magnetofrictional modelling of the energisation of stealth CME source regions and magnetohydrodynamic modelling of the physical processes that generate stealth CME or CME-like eruptions, typically from higher altitudes in the solar corona than CMEs from active regions or extended filament channels. 
    more » « less